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Abstract This paper deals with the convergence analysis of a second order proximal
method for approaching critical points of a smooth and quasiconvex objective function
defined on a real Hilbert space. The considered method, well-known in the convex case, uni-
fies proximal method, relaxation and inertial-type extrapolation. The convergence theorems
established in this new setting improve recent ones.
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1 Introduction

In this paper, we study the asymptotic behavior of some modified proximal algorithms
for computing critical points of a real-valued function f , assumed to be quasiconvex (see
Definition 2.1) and differentiable over a real Hilbert space H. As a special case, we also pay
some attention to the unconstrained minimization problem

min
x∈H

f (x). (1)

The space H will be endowed with a scalar product 〈., .〉 and its induced norm |.|. The algo-
rithms on which we focus, are mainly based upon an implicit discretization of the following
second order evolution system [1,6,10]{

x ′′(t) + γ x ′(t) + ∇ f (x(t)) = 0,

x(0) = x0, x ′(0) = y0,
(2)
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where x0, y0 belong to H, γ is a positive (damping or friction) term, and ∇ f (.) stands for
the gradient of f . Equation (2), also called “heavy ball with friction dynamical system”,
gave rise to various numerical methods (for monotone inclusions and fixed point problems)
related to the “inertial” terminology (first introduced in [3]). They incorporate second order
information to achieve nice convergence properties [1–3,18,19]. In particular, the so-called
inertial proximal method was originally proposed in [1] as an algorithmic solution to (1),
when f is convex and possibly noonsmooth. It consists of the iteration

xn+1 = argminx∈H
{

f (x) + (1/2)λ−1
n |x − xn − θn(xn − xn−1)|2

}
, (3)

with parameters (λn) ⊂ (0,+∞) and damping terms (θn) ⊂ [0, 1). In the special case when
θn = 0, the method (3) reduces to the classical proximal point algorithm initiated in [17]
(also see [12,23,24]), namely

xn+1 = argminx∈H
{

f (x) + (1/2)λ−1
n |x − xn |2} . (4)

Let us briefly recall the motivation for the previously mentioned processes. Proximal algo-
rithms were deeply studied as fundamental tools for solving ill-posed or ill-conditioned
(convex or nonconvex) minimization problems. These methods consists of replacing the
original objective by a sequence of better behaved functionals. This leads to solve more com-
putationally stable problems. Furthermore, due to their mechanical interpretations, second
order dynamical models such as (2) open interesting perspectives for designing new effi-
cient algorithms. Indeed, in the special case when H = IR2, (2) is a simplified model which
describes the motion of a heavy ball rolling over the graph of f and which keeps rolling
under its own inertia until stopped by friction at a critical point of f [6]. Let us point out that
(2) is not a descent method, but it is some global energy of the system that decreases, which
allows to overcome some drawbacks of the steepest descent method

x ′(t) + ∇ f (x(t)) = 0. (5)

For instance, this latter system is unable to cross any non-minimum critical point of f , while
(2) captures some exploring properties of the ball’s motion. For further details related to the
exploration of local minima and their practical applications, we refer to [4,10]. The second-
order nature of (2) may be also exploited to obtain faster convergence [3,13]. In contrast with
(3), the standard proximal point algorithm is based upon an implicit discretization of the first
order method (5). The “inertia” induced by the term “θn(xn − xn−1)” in (3) considerably
improves the speed of convergence comparing with (4) (see [13], for numerical experiments).
This can be explained by the fact that the vector “xn −xn−1” acts as an impulsion term (mostly
at the beginning of trajectories), while the coefficient “θn” plays the role of a speed regulator.

On the other hand, quasiconvex minimization problems arise in several important appli-
cations in economic theory, location theory, control theory and so on [4,9–11,26]. It is
noteworthy that numerical approaches to some of these problems can be obtained by steepest
descent methods [16] (also see [15] for more efficient subgradient methods), based upon
non-implicit discretizations of the first order equation (5). Proximal methods, based upon
implicit discretizations of (2) and (5), were only recently introduced as alternative (also
complementary) approaches to quasiconvex minimization [10,22]. Nonquadratic proximal
methods were also investigated, by replacing the quadratic distance in (4) with a Bregman
distance or an entropy-like distance [5,21]. Other interesting works combining the proximal
methodology and nonconvex programming can be found in [14] for some situations when the
objective function in (4) becomes strongly convex, while f itself is assumed to be nonconvex
(but not necessarily quasiconvex). Note that most of these methods deal with the quasiconvex
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situation only in the finite dimensional case H = IRn , except for that of [15] and the inertial
proximal method in [10] which are both considered in setting of Hilbert spaces.

Remark 1.1 Obviously, to deal with practical purposes, the proximal methods proposed
above have to be combined with an optimization algorithm for solving auxiliary problems
of the form min { f (x) + d(x) : x ∈ H}, where d : H → IR ∪ {+∞} is strongly convex.
Roughly speaking, one cannot expect that these regularized subproblems are easier solvable
than the original one. In particular, when f is quasiconvex (or nonconvex), the resulting
proximity functions are not necessary single-valued (i.e. a subproblem may admit more than
one solution), besides the function to be minimized in a subproblem may not be quasiconvex
(because the class of quasiconvex functions is not closed by addition). Nevertheless, the
proximal-type methodology turned out to be of fundamental importance for the development
of successful numerical approaches such as operator splitting and bundle methods (see, e.g.,
[25]). In the same spirit, applying proximal methods to quasiconvex functions may pave
the way for new optimization techniques, although such works could be regarded as purely
theoretical. Another point of interest is to keep in mind that proximal methods have been
successfully applied to classes of nonconvex functions occurring in concrete applications
[14] (also see [21] for some quasiconvex cases). Similar investigations could be done in the
present framework, but this is out of scope of our study.

In our work, we focus on the inertial proximal method in [10], obtained by an implicit dis-
cretization of (2). First, we recall some of the main convergence results given in [10] regarding
the continuous system (2). These results improve that of [6] (for a convex objective) and can
be summarized as follows.

Theorem 1.1 ([10]) Assume that f is C1,1 and quasiconvex on H, with S = argminH f 
= ∅.
Then, for every trajectories x(.) of system (2), the following properties hold:

(i) lim
t→∞ x ′(t) = lim

t→∞ x ′′(t) = lim
t→∞ ∇ f (x(t)) = 0 and lim

t→∞ f (x(t)) exists.

(ii) x(t) weakly converges in H towards some x∞.
(iii) ∇ f (x∞) = 0.
(iv) If x∞ /∈ argminH f , then the convergence is strong.

Theorem 1.1 puts out the remarkable properties of system (2) regarding the exploration of
non-minimum critical point of f . A discrete version of this theorem was then established for
the inertial proximal method in [10]. This latter method, considered in the setting of Hilbert
spaces, is written as

xn+1 ∈ argminx∈H
{

f (x) + (1/2)λ−1
n |x − xn − θn(xn − xn−1)|2

}
, (6)

with particular parameters (λn) and (θn) set to be such that

θn = hn

hn−1

1

(1 + νhn)
, λn = h2

n

(1 + νhn)
, (7)

where ν ∈ (0,∞) and (hn) is a positive sequence verifying limn→∞ hn = ∞.

Remark 1.2 Let us emphasize that the method proposed in [10] only consider a special
case of (6), also in the special range of parameter λn → ∞. Interesting convergent results
are given in [10] regarding either the exploration of local minima, namely the case when the
iterates (xn) converge to a non-minimum critical point, or the exploration of global minima.
However, it seems that there is a gap in the proofs for optimality of weak accumulation
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points of (xn). Indeed, the condition hn → ∞ entails (1/λn) → 0, which cannot allow the
exploration of minima else than global ones. This can be clarified in light of Theorems 3.1
and 3.2. Furthermore, studies only in the range hn → ∞ remain far from being satisfactory,
since the method (4) is well-known to become computationally unstable as (1/λn) → 0.

It is our purpose here to propose a correct analysis of the proximal method (6), for a broader
range of the involved parameters, even in a more general setting which combines inertial-
type extrapolation with suitable relaxation factors. The latter strategy is intended to act as a
speeding up process. The spirit of our work is the same as that in [2] related to monotone
operators. More precisely, given parameters (λn) ⊂ (0,∞), (θn) ⊂ [0, 1) and (wn) ⊂ (0, 2)

(including the over-relaxation case (wn) ⊂ (1, 2)), we investigate the following procedure:
Inertial and Relaxed Proximal Algorithm:

• Step 0 (Initialization). Choose any x0, x1 ∈ H.
• Step 1 (for n ≥ 1). Set vn = xn + θn(xn − xn−1), and compute

yn ∈ argminH
{

f (x) + (1/2)λ−1
n |x − vn |2} . (8a)

• Step 2. Compute

xn+1 = (1 − wn)vn + wn yn; (8b)

go to Step 1.

Let us precise that the method (8) makes sense, provided that f is bounded from below
(see Proposition 2.1). This paper establishes the asymptotic convergence of the method (8)
under conditions related to the involved parameters (damping term (θn), relaxation factor
(wn) and proximal stepsize (λn)). Two main convergence theorems are given (Theorems 3.1
and 3.2). It turns out that the main results claimed in [10] are rigorously stated in a new
setting, while some of them are improved in either form or requirements of parameters.

Remark 1.3 To the best of our knowledge, results such as in Theorem 3.1 and 3.2 does not
appear in the existing literature, even in the special case of (8) when wn ≡ 1, θn ≡ 0 and H is
finite dimensional [22] (which corresponds to the classical proximal method). Then our work
is also complementary to that of [22] (related to a possibly nonsmooth objective function).

Remark 1.4 Algorithm (8) would be considerably enhanced by introducing inexact compu-
tations in Step 1 (see Remark 3.2). However for legibility’s sake we do not include such a
procedure.

2 Basic results and preliminaries

We begin with definition and other characterization of quasiconvexity [7,8].

Definition 2.1 A real-valued function f : H → IR is called quasiconvex on some convex
subset C of H if, for every t ∈ (0, 1) and for all x , y in C , there holds f (t x + (1 − t)y) ≤
max{ f (x), f (y)}.
Remark 2.1 Definition 2.1 can be alternatively characterized by the fact that, for everyα ∈ IR,
the level set L f (α) := {x ∈ C; f (x) ≤ α} is convex. In the case when C is an open convex
set and f is continuously differentiable over C , Definition 2.1 is equivalent to ([8]):

(∀x, y ∈ C), f (y) ≤ f (x) ⇒ 〈∇ f (x), y − x〉 ≤ 0. (9)
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Clearly, the notion of quasiconvexity includes that of convexity. However, in contrast
with convex functions, quasiconvex ones may present critical points which are not min-
ima. Through our study, we will be essentially concerned with the characterization (9) of
quasiconvexity.

Now we show that the proximal method (8) makes sense.

Proposition 2.1 If f is quasiconvex, continous and bounded from below over H, then the
sequence (xn) generated by (8) is well-defined with (λn) ⊂ (0,∞).

Proof Clearly, it suffices to prove that each iterate yn exists (even non-uniquely) for (8)
to make sense. To put out this latter fact, we introduce the mapping g : H → IR de-
fined, for every x ∈ H, by g(x) = f (x) + β|x − v|2, where β > 0 and v ∈ H. Then we
just need to prove that the set of minimizers of g is nonempty, under the conditions that
f is quasiconvex, continous and bounded from below on H. Indeed, by the latter condi-
tion, we observe that g is bounded below (as f ≤ g), and we set m∗ = infH g (hence
m∗ is finite). Thus, for any x in the level set Lg(g(a)) := {x ∈ C; g(x) ≤ g(a)}, a be-
ing some element in H, we have g(a) ≥ m∗ + β|x − v|2, so that Lg(g(a)) is bounded.
Now consider a minimizing sequence (zn) of g, namely (zn) satisfies m∗ = limn→∞ g(zn).
It is then immediate that g(zn)≤ g(a) for n ≥ n0 (n0 being some large enough integer).
Consequently, we have (zn)n≥n0 ⊂ Lg(g(a)), which proves that (zn)n≥n0 is a bounded
sequence, hence we can consider a subsequence (znk ) of (zn) such that (znk ) converges
weakly to some element q ∈ H as k → ∞. By convergence of the whole sequence (g(zn)),
we also have limk→∞ g(znk ) = limn→∞ g(zn) = m∗. Furthermore, it is well-known that
continuous quasi-convex functions are weakly lower semicontinuous. As f and the mapping
d : x → β|x − v|2 are continuous and quasiconvex (thus they are weakly lower semicon-
tinuous), we then obtain m∗ ≤ g(q) = f (q) + d(q) ≤ lim inf

k→∞ f (znk ) + lim inf
k→∞ d(znk ) ≤

lim inf
k→∞ ( f (znk ) + d(znk )) = lim inf

k→∞ g(znk ) = m∗. Therefore, we deduce g(q) = m∗, which

leads to argminHg 
= ∅. ��
In the next section, we establish a discrete version of Theorem 1.1 for Algorithm (8). For

simplicity’s sake, we introduce here three preliminary propositions needed for our conver-
gence analysis. The first one is the well-known discrete version of the Opial result ([20]).

Proposition 2.2 ([20]) Let H be a Hilbert space and (xn) a sequence in H such that there
exists a nonempty set � ⊂ H satisfying:

(i) For every u ∈ �, limn→∞|xn − u| exists.
(ii) Any weak cluster point of (xn) belongs to �.

Then, there exists x̄ ∈ � such that (xn) weakly converges to x̄ .

The second proposition is a quite standard result (see, e.g., [3]).

Proposition 2.3 Let (an), (δn), (θn) be nonnegative sequences verifying:

an+1 ≤ θnan + δn, ∀n ≥ 0. (10)

If (θn) ⊂ [0, θ ] (for some θ ∈ [0, 1)) and
∑

n δn < ∞, then
∑

n an < ∞.

The third proposition appears implicitly in [2,3], and its proof is given for the sake of
completeness.

123



636 J Glob Optim (2009) 45:631–644

Proposition 2.4 Let (φn), (δn) and (θn) in [0,∞) be such that :

φn+1 − φn ≤ θn(φn − φn−1) + δn . (11)

If (θn) ⊂ [0, θ ] (for some θ ∈ [0, 1)) and
∑

n δn < ∞, then (φn) converges and
∑

n[φn+1 −
φn]+ < ∞, where [t]+ := max{t, 0} for any t ∈ (−∞,∞).

Proof Setting un := φn −φn−1 and using (11), we have [un+1]+ ≤ θn[un]+ +δn, which by
Proposition 2.3 amounts to

∑
n≥0[un+1]+ < ∞. Then, setting wn := φn − ∑n

j=1[u j ]+, we
deduce that the sequence (wn) is bounded from below. Furthermore, by a simple calculation,
we obtain wn+1 = φn+1 − [un+1]+ − ∑n

j=1[u j ]+ ≤ wn, hence (wn) is nonincreasing.
Consequently, we deduce that (wn) is convergent, and so is (φn). ��

3 Convergence analysis

In the remainder of the paper, we assume that the objective function f occurring in (1) is
such that:

f is quasiconvex and continuously differentiable on H, (12)

inf
x∈H

f (x) > −∞ (i.e. f is bounded from below). (13)

Two main theorems will be given regarding the asymptotic convergence of (8):

(1) The first one (Theorem 3.1) can be viewed as a discrete variant of Theorem 1.1, and it
is stated under the additional conditions:

0 < inf
n

wn ≤ sup
n

wn < 2. (14)

∃ λ > 0 such that (λn) ⊂ (λ,+∞). (15)

∃θ ∈ [0, 1) such that (θn) ⊂ [0, θ). (16)

∑
n≥1

θn |xn − xn−1|2 < ∞. (17)

(2) The second result (Theorem 3.2) establishes the same conclusions as Theorem 3.1 when
conditions (16)–(17) are replaced by the following one:

There exists δ0 ∈
(

0, δ
δ+µ

)
, where δ = infn

2−wn
2wn

and µ = max{1, 2δ},
such that (θn) is a nondecreasing sequence in [0, δ0]. (18)

Remark 3.1 Observe that conditions (16)–(17) in Theorem 3.1 are not restrictive at all, as
they are easily implemented in numerical computations. To see this, choose θ ∈ [0, 1), a
sequence (εn) ⊂ [0,∞) such that

∑
n εn < ∞, and consider the sequence (en) defined by

en := min

{
εn

|xn − xn−1|2 , θ

}
if xn 
= xn−1, en := θ otherwise. (19)

Clearly, (16)–(17) are satisfied if, at each step (xn−1 and xn being given), the update xn+1

is computed by (8) and by choosing θn such that 0 ≤ θn ≤ en . Recall that one of the
main convergence theorems in [3] (regarding the convex case) was treated under conditions
(15)–(17).
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Before proving our main results, we give two preliminary lemmas.

Lremma 3.1 Let (xn) and (yn) be given by (8) under conditions (12)–(17) and assume the
set U = {z ∈ H, f (z) ≤ infn f (yn)} is nonempty. Then the following statements hold:

(i1) (|xn − q|) converges for every q ∈ U.
(i2)

∑
n≥0 |xn − xn−1|2 < ∞ and

∑
n≥0 |xn − yn |2 < ∞.

(i3)
∑

n≥0 λnwn〈∇ f (yn), yn − q〉 < ∞ for every q ∈ U.

Proof Clearly, by (8a), we classically have 0 = (yn − vn)/λn + ∇ f (yn), which in addition
to (8b) leads to

xn+1 = vn − λnwn∇ f (yn), (20)

hence, taking any q ∈ U , we obtain

− λnwn〈∇ f (yn), yn − q〉 = 〈xn+1 − vn, yn − q〉. (21)

Moreover, again by (8b) we have xn+1 − q = (1 − wn)(vn − q) + wn(yn − q), namely
yn − q = 1

wn
(xn+1 − q) − 1−wn

wn
(vn − q), which by (21) gives

− λnwn〈∇ f (yn), yn − q〉 =
〈
xn+1 − vn,

1

wn
(xn+1 − q) − 1 − wn

wn
(vn − q)

〉

= 1

wn
〈xn+1 − vn, xn+1 − q〉 + 1 − wn

wn
〈vn − xn+1, vn − q〉 .

(22)

Furthermore, for any a, b ∈ H, it is easily checked that

〈a, b〉 = −(1/2)|a − b|2 + (1/2)|a|2 + (1/2)|b|2, (23)

so that

〈xn+1 − vn, xn+1 − q〉 = −1

2
|vn − q|2 + 1

2
|xn+1 − vn |2 + 1

2
|xn+1 − q|2,

〈vn − xn+1, vn − q〉 = −1

2
|xn+1 − q|2 + 1

2
|xn+1 − vn |2 + 1

2
|vn − q|2.

Combining (22) with the previous two inequalities, we obtain

− 2λnw2
n〈∇ f (yn), yn − q〉 = −|vn − q|2 + |xn+1 − vn |2 + |xn+1 − q|2

+ (1 − wn)(−|xn+1 − q|2 + |xn+1 − vn |2 + |vn − q|2)
= −wn|vn − q|2+(2 − wn)|xn+1 − vn |2+wn |xn+1 − q|2,

(24)

that is

|xn+1 − q|2 + 2λnwn〈∇ f (yn), yn − q〉 = |vn − q|2 − 2 − wn

wn
|xn+1 − vn |2. (25)

Moreover, by an easy computation, we obtain

|vn − q|2 = |(xn − q) + θn(xn − xn−1)|2
= |xn − q|2 + 2θn〈xn − q, xn − xn−1〉 + θ2

n |xn−1 − xn |2,
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hence, by (25), we obtain

|xn+1 − q|2 − |xn − q|2 + 2λnwn〈∇ f (yn), yn − q〉 ≤
2θn〈xn − q, xn − xn−1〉 + θ2

n |xn−1 − xn |2 − 2 − wn

wn
|xn+1 − vn |2. (26)

From (23) we also have

〈xn − q, xn − xn−1〉 = −1

2
|xn−1 − q|2 + 1

2
|xn − q|2 + 1

2
|xn − xn−1|2,

which together with the previous inequality amounts to

|xn+1 − q|2 − |xn − q|2 + 2λnwn〈∇ f (yn), yn − q〉 ≤ θn(|xn − q|2 − |xn−1 − q|2)
+ (θ2

n + θn)|xn−1 − xn |2 − 2 − wn

wn
|xn+1 − vn |2. (27)

Furthermore, by quasiconvexity of f and by f (q) ≤ f (yn), we have

〈∇ f (yn), yn − q〉 ≥ 0 ∀n ≥ 0, (28)

then, in light of (27), we obtain

|xn+1 − q|2 − |xn − q|2 ≤ θn(|xn − q|2 − |xn−1 − q|2)
+(θn + θ2

n )|xn−1 − xn |2 − 2−wn
wn

|xn+1 − vn |2, (29)

hence, for wn ∈ (0, 2] and θn ∈ [0, 1], we deduce

|xn+1 − q|2 − |xn − q|2 ≤ θn(|xn − q|2 − |xn−1 − q|2) + 2θn |xn−1 − xn |2. (30)

Suppose now
∑

n≥0 θn |xn − xn−1|2 < ∞, where (θn) ⊂ [0, θ ] and θ ∈ [0, 1). Then, by (30)
and applying Proposition 2.4, we deduce that (|xn−q|) is convergent (hence (xn) is bounded).
Again from (30) and Proposition 2.4, we obtain

∑
n≥0[|xn − q|2 − |xn−1 − q|2]+ < ∞,

while from (27) we have

2 − wn

wn
|xn+1 − vn |2 + 2λnwn〈∇ f (yn), yn − q〉

≤ |xn − q|2 − |xn+1 − q|2 + θn[|xn − q|2 − |xn−1 − q|2]+ + 2θn |xn−1 − xn |2,
hence we obviously obtain

∑
n≥0

2 − wn

wn
|xn+1 − vn |2 < ∞ and

∑
n≥0

λnwn〈∇ f (yn), yn − q〉 < ∞.

Clearly, if 0 < infn wn ≤ supn wn < 2, we deduce
∑

n≥0 |xn+1 −vn |2 < ∞. Concerning
this series, we immediately have

|vn − xn+1|2 = |(xn − xn+1) + θn(xn − xn−1)|2
= |xn − xn+1|2 + 2θn〈xn − xn+1, xn − xn−1〉 + θ2

n |xn − xn−1|2, (31)

while by Young’s inequality we have

2θn〈xn − xn+1, xn − xn−1〉 = 〈xn − xn+1, (2θn)(xn − xn−1)〉
≥ − 1

2 (2θn)2|xn − xn−1|2 − 1
2 |xn − xn+1|2

= −2θ2
n |xn − xn−1|2 − 1

2 |xn − xn+1|2.
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Consequently, combining this last inequality with (31), we get

|vn − xn+1|2 ≥ 1

2
|xn − xn+1|2 − θ2

n |xn − xn−1|2, (32)

hence, as θ2
n ≤ θn , we obtain

|xn − xn+1|2 ≤ 2|vn − xn+1|2 + 2θn |xn − xn−1|2,
which amounts to

∑
n≥0 |xn −xn+1|2 <∞. Moreover, by (8b), we recall that xn+1 = (1−wn)

vn + wn yn , so that xn+1 − xn = (1 − wn)(vn − xn) + wn(yn − xn), hence

w2
n |yn − xn |2 = |(xn+1 − xn) − (1 − wn)(vn − xn)|2

= |(xn+1 − xn) − θn(1 − wn)(xn − xn−1)|2
= |xn+1 − xn |2 + 2θn(1 − wn)〈xn+1 − xn, xn−1 − xn〉

+θ2
n (1 − wn)2|xn − xn−1|2,

then, again from Young’s inequality, we obtain

w2
n |yn − xn |2 ≤ 2|xn+1 − xn |2 + 2θ2

n (1 − wn)2|xn − xn−1|2.
Consequently, reminding that

∑
n≥0 |xn+1 − xn |2 < ∞ and infn wn > 0, we deduce∑

n≥0 |yn − xn |2 < ∞, which completes the proof. ��
In the next lemma, we state some preliminary convergence results, given in a general

setting in view of forthcoming developments.

Lremma 3.2 Let (xn)and (yn)given by (8) under (12)–(17) and assumeU ={z ∈H, f (z)≤
infn f (yn)} 
=∅. Then the following results hold:

(j1) The sequence ( f (yn)) is convergent.
(j2) If limn→∞ f (yn) = infq∈U f (q), then (xn) converges weakly to some element x∗ in

H verifying f (x∗) = infq∈U f (q).
(j3) If limn→∞ f (yn) > infq∈U f (q), then (xn) converges strongly to some element x∗ in

H.
(j4) If (xn) converges weakly to some element x∗ and if lim supn→∞ λn = ∞, then f (x∗) =

infq∈U f (q).

Proof Let us prove (j1). From (8a), we obviously have

(∀n ≥ 0), (∀x ∈ H), f (yn) + 1

2λn
|yn − vn |2 ≤ f (x) + 1

2λn
|x − vn |2. (33)

Then, setting x = yn−1 in (33) and by (15) (i.e, λn ≥ λ > 0), we get

f (yn) − f (yn−1) ≤ 1

2λ
|yn−1 − vn |2. (34)

Moreover, regarding the term in the right-hand side of the above inequality, we have

|vn − yn−1|2 = |(xn − yn−1) + θn(xn − xn−1)|2
= |(1 + θn)(xn − xn−1) + (xn−1 − yn−1)|2
= (1 + θn)2|xn − xn−1|2 + |xn−1 − yn−1|2

+ 2(1 + θn)〈xn − xn−1, xn−1 − yn−1〉,
hence, by Young’s inequality, we get

|vn − yn−1|2 ≤ 2(1 + θn)2|xn − xn−1|2 + 2|xn−1 − yn−1|2, (35)
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which by
∑

n≥0 |xn − xn−1|2 < ∞ and
∑

n≥0 |yn − xn |2 < ∞ (from Lemma 3.1 (i2)) yields
∑
n≥0

|vn − yn−1|2 < ∞. (36)

In light of (34) and (36), we easily deduce that ( f (yn)) is convergent, because this latter
sequence is also bounded from below (as U is assumed to be nonempty).

Now we prove (j2). Assume there holds

lim
n→∞ f (yn) = inf

z∈U
f (z). (37)

Given any element q in U , we know by Lemma 3.1 that (|xn − q|) is convergent, so that
(xn) is a bounded sequence. Let us prove that any weak accumulation point of (xn) lies in
U . To this aim, we consider a subsequence (xnk ) of (xn) such that (xnk ) converges weakly
to some u in H (as k → ∞). It is then immediate that (ynk ) also converges weakly to u,
because |yn − xn | → 0 (as

∑
n≥0 |xn − yn |2 < ∞ by Lemma 3.1). In addition, f being

assumed to be quasiconvex and continuous, we recall that f is weakly lower semi-continuous,
which by (37) amounts to f (u) ≤ lim infk→∞ f (ynk ) = lim infn→∞ f (yn) = inf z∈U f (z).
Therefore, using the definition of U , we immediately obtain

f (u) ≤ inf
z∈U

f (z) ≤ inf
n

f (yn), (38)

so that u ∈ U . Also note that u ∈ U and (38) shows that f (u) = inf z∈U f (z). Now, applying
Proposition 2.2, we conclude that (xn) converges weakly to some element x∗ in U , which
proves (j2).

Let us prove (j3). Assume there holds

lim
n→∞ f (yn) > inf

z∈U
f (z). (39)

In that case, it is a simple matter to see that there exists q ∈ U verifying limn→∞ f (yn) >

f (q). Hence, from continuity of f (at q), it is immediate that exist a nonempty closed ball
� := B(q, ρ) (closed ball of center q and radius ρ) and some integer n0 such that

(∀n ≥ n0), (∀z ∈ �), f (z) ≤ f (yn). (40)

Let zn = q + (ρ/|∇ f (yn)|)∇ f (yn) (provided that |∇ f (yn)| 
= 0). Clearly, zn belongs to
� (since |zn − q| = ρ), while by an easy computation we have

|∇ f (yn)| = 〈∇ f (yn),
ρ

|∇ f (yn)|∇ f (yn)〉
= 〈∇ f (yn), zn − q〉
= 〈∇ f (yn), zn − yn〉 + 〈∇ f (yn), yn − q〉,

then, as 〈∇ f (yn), zn − yn〉 ≤ 0 (by quasiconvexity of f and by f (zn) ≤ f (yn)), we get
|∇ f (yn)| ≤ 〈∇ f (yn), yn − q〉. It is obvious that the latter inequality remains valid even if
∇ f (yn) = 0, which by Lemma 3.1 yields∑

n≥0

λnwn |∇ f (yn)| < ∞. (41)

Moreover, by (20), we obtain

xn+1 − xn = θn(xn − xn−1) − λnwn∇ f (yn), (42)

hence, setting δn = λnwn |∇ f (yn)|, we obviously get

|xn+1 − xn | ≤ θn |xn − xn−1| + δn . (43)
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Then, applying Proposition 2.3, we deduce
∑

n≥0 |xn+1 − xn | < ∞, so that (xn) converges
strongly to some element x∗ in H.

It remains to prove (j4). Suppose (xn) converges weakly to some element x∗ in H. Again by
Lemma 3.1 we have |xn−yn | → 0 (as

∑
n≥1 |xn−yn |2 < ∞), hence (yn) converges weakly to

x∗. Moreover, by (33) and taking any q ∈ U , we obviously get f (yn) ≤ f (q) + 1
2λn

|q − vn |2.
Passing to the limit in this last inequality, using the weak lower semicontinuity of f , and
observing that lim infn→∞ 1

2λn
|q − vn |2 = 0 (as lim supn→∞ λn = ∞ and (vn) is bounded),

we deduce f (x∗) ≤ lim infn→∞ f (yn) ≤ f (q), hence, by definition of U , we get

f (x∗) ≤ inf
q∈U

f (q) ≤ inf
n

f (yn). (44)

Then x∗ ∈ S, which together with (44) entails f (x∗) = infq∈U f (q), and the proof is com-
pleted. ��

Now we are in position to state the first main result of this section.

Theorem 3.1 Let (xn) and (yn) be the sequences given by (8) under conditions (12)–(17).
Then it holds that:

(r1) If S = argminH f 
= ∅, then (xn) converges weakly to some element x∗ in H satisfying
∇ f (x∗) = 0. Moreover, ( f (yn)) is convergent, besides

∑
n |xn − xn−1|2 < ∞ and∑

n |xn − yn |2 < ∞.
If in addition x∗ /∈ S, then (xn) converges strongly to x∗.

(r2) If S = argminH f 
= ∅ and lim supn→∞ λn = ∞, then the weak limit x∗ attained by
(xn) belongs to S.

(r3) If the set � = {x ∈ H; ∇ f (x) = 0} of critical points of f is empty, then (xn) is
unbounded.

Proof Let us prove (r1). Assume S 
= ∅, hence we immediately haveU := {z ∈ H; f (z) ≤
infn f (yn)} 
= ∅, because S ⊂ U . Then the sequence ( f (yn)) is convergent (by Lemma 3.2)
and the two given estimates hold (from Lemmas 3.1 and 3.2). Furthermore, taking x ∈ S,
we note that infq∈U f (q) = f (x). It is also clear that the limit of ( f (yn)) satisfies one of the
following two items:

(i) (Case 1) limn→∞ f (yn) = f (x); (ii) (Case 2) limn→∞ f (yn) > f (x).

Consequently, again from Lemma 3.2, we deduce that (xn) converges weakly in Case 1
and strongly in Case 2. This establishes the weak convergence of (xn) to some x∗ in H. Let
us now focus on the weak limit point of (xn). Note that, in Case 1, the limit x∗ of (xn) belongs
to S (by Lemma 3.2), hence we additionally have ∇ f (x∗) = 0. Concerning the strong limit
x∗ of (xn) in Case 2, by Lemma 3.1, we have |xn − yn | → 0 (since

∑
n |xn − yn |2 < ∞),

hence (yn) converges strongly to x∗. Also recall that |xn+1 − xn | → 0, while (λnwn) is
bounded away from zero (thanks to (14) and (15)). Then, passing to the limit in (42) and
using the continuity of ∇ f , we deduce that ∇ f (x∗) = 0. Thus, in Case 1 and Case 2,
the limit (x∗) of (xn) satisfies ∇ f (x∗) = 0, namely x∗ is a critical point of f . Also recall
that, in Case 1, we obtain x∗ ∈ S. Therefore, in any situation when x∗ /∈ S, we are con-
cerned with Case 2, in which strong convergence of (xn) to x∗ holds. This completes the
proof of (r1). (r2) is a straightforward consequence of Lemma 3.2 (j4). Now let us prove (r3),
namely (xn) is unbounded under the two conditions that � is empty and lim supn→∞ λn = ∞.
Otherwise, (xn) is bounded (hence so is (vn) occurring in (8)), so that (yn) is bounded, because
yn = (1/wn)(xn+1 − (1 − wn)vn). Set m∗ = lim infn→∞ f (yn) (possibly m∗ = −∞) and
let (ynk ) be a subsequence of (yn) such that lim infk→∞ f (ynk ) = m∗. Clearly, as (yn) is
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bounded, there also exists a subsequence (ymk ) of (yn) such that lim infk→∞ f (ymk ) = m∗
and such that (ymk ) converges weakly (as k → ∞) to some element u in H. By weak lower
semicontinuity of f (assumed to be quasiconvex and continuous), we then have f (u) ≤
limk→∞ f (ymk ) = lim infn→∞ f (yn). It is then immediate that there exists q in H such
that f (q) ≤ infn f (yn), so that U := {z ∈ H; f (z) ≤ infn f (yn)} 
= ∅. In light of
Lemma 3.2 (j1), we then deduce that the sequence ( f (yn)) is convergent, hence, we easily
obtain f (u) ≤ limn→∞ f (yn) = m∗. Now, take any element q ∈ U . Since q is not a global
minimizer of f (as the set � is assumed to be nonempty), we can also exhibit a minimizing
sequence (qn) ⊂ H of f , namely limn→∞ f (qn) = infH f . Clearly, for n ≥ n0 (where
n0 is some large enough integer), we have f (qn) ≤ f (q), hence (qn)n≥n0 ⊂ U , so that
infH f ≤ infq∈U f (q) ≤ limn→∞ f (qn) = infH f , which leads to infq∈U f (q) = infH f .
Hence, as u is not a global minimizer of f , we easily obtain

inf
q∈U

f (q) = inf
H

f < f (u) ≤ m∗ = lim
n→∞ f (yn) (45)

(hence infq∈U f (q) < limn→∞ f (yn)). Consequently, invoking Lemma 3.2 (j3), we deduce
that (xn) converges strongly to some element x∗, and so does (yn), as |xn − yn | → 0 (by
Lemma 3.1). Also recall that |xn+1 − xn | → 0 (by Lemma 3.1), while (λnwn) is bounded
away from zero (by (14) and (15)). Therefore, using (42) together with the continuity of ∇ f ,
we get ∇ f (x∗) = 0, namely x∗ ∈ �, which is absurd. This completes the proof. ��

Now we claim the second main result of this section.

Theorem 3.2 Let (xn) and (yn) be given by (8) with conditions (12)–(15) and (18). Then
(xn) satisfies the same conclusions as in Theorem 3.1.

Proof First, we prove that assumptions (16)–(17), when they are replaced by condition (18),
are automatically satisfied in the framework of Lemmas 3.1 and 3.2. More precisely, we
show that (17) holds under conditions (12)–(15), (18) provided that U = {q ∈ H, f (q) ≤
infn f (yn)} 
= ∅. Set δ = infn

2−wn
2wn

. Clearly, by (14), we have δ ∈ (0,∞), hence, taking
any q ∈ U and using (29), we immediately have

|xn+1 − q|2 − |xn − q|2 ≤ θn(|xn − q|2 − |xn−1 − q|2) + (θn + θ2
n )|xn−1 − xn |2

− 2δ|xn+1 − vn |2.
Furthermore (31) is written as

|vn − xn+1|2 = |xn − xn+1|2 + θ2
n |xn − xn−1|2 + 2θn〈xn − xn+1, xn − xn−1〉,

which by Young’s inequality amounts to

|vn − xn+1|2 ≥ (1 − θn)|xn − xn+1|2 + (θ2
n − θn)|xn − xn−1|2.

Therefore, combining the above inequalities, we obtain

|xn+1 − q|2 − |xn − q|2 ≤ θn(|xn − q|2 − |xn−1 − q|2) − 2δ(1 − θn)|xn+1 − xn |2
+[(θn + θ2

n ) + 2δ(θn − θ2
n )]|xn−1 − xn |2.

while it is also a simple matter to see that

(1/2)(1 + θn) + δ(1 − θn) ≤ 2 max{1/2, δ},
hence, setting µ = 2 max{1/2, δ}, we deduce

|xn+1 − q|2 − |xn − q|2 ≤ θn(|xn − q|2 − |xn−1 − q|2) − 2δ(1 − θn)|xn+1 − xn |2
+µθn |xn−1 − xn |2.
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Then the desired estimate (17) can be obtained by following the same lines as in [3].
However, we give full details so that the proof is self-contained. For simplicity’s sake, we set
φn = (1/2)|xn − q|2 and dn = |xn − xn−1|2, which by the previous inequality leads to

φn+1 − φn − θn(φn − φn−1) ≤ −δ(1 − θn)dn+1 + µθndn

= −µθn+1dn+1 + µθndn + [µθn+1 − δ(1 − θn)]dn+1.

Then, assuming (θn) is nondecreasing, we obtain

φn+1 − φn − (θnφn − θn−1φn−1) ≤ −µθn+1dn+1 + µθndn − [δ − (µ + δ)θn+1]dn+1.

Consequently, assuming (θn) ⊂ [0, δ0] (where δ0 ∈ (0, δ
δ+µ

)), also setting γ = δ −
δ0(µ + δ) (hence γ > 0) and �n := φn − θn−1φn−1 + µθndn , we get

�n+1 − �n ≤ −γ dn+1. (46)

Thus, (�n) is nonincreasing, so that φn − θφn−1 ≤ �n ≤ �1, which entails φn ≤ θnφ0 +
�1

1−θ
. Again with (46), we get γ

∑n
k=1 dk+1 ≤ �1 − �n+1, while −�n ≤ θφn−1, hence

γ
∑n

k=1 dk+1 ≤ �1 + θφn−1 ≤ �1 + θnφ0 + θ �1
1−θ

, which leads to
∑

k≥1 dk+1 < ∞, that
is the desired estimate (17). It is then immediate that the conclusions of Lemmas 3.1 and
3.2 hold under conditions (12)–(15), U 
= ∅ and (18). The conclusions of Theorem 3.2 are
therefore obtained as for the proof of Theorem 3.1 ��
Remark 3.2 In view of next developments regarding practical implementations of (8), it
would be interesting to introduce an additional procedure allowing inexact computations in
Step 1:

(1) A first example would be to consider inexact global minimization

yn ∈ εn − argminH
{

f (x) + (1/2)λ−1
n |x − vn |2} , where(εn) ⊂ [0,∞),

under suitable conditions on the error tolerance (εn).
(2) A second example, even better suited, would be to consider inexact local stationary

condition of the form

|∇ f (yn) + (1/λn)(yn − vn)| ≤ εn, where (εn) ⊂ [0,∞). (47)

However (47) ensures only that (yn) is close to a local minimum of f (.) + (1/2)λ−1
n |.

− vn |2, but not necessarily near a global minimum. Condition (47) would then be applicable
for instance to situation when the local minima of f (.) + (1/2)λ−1

n |. − vn |2 are global ones
(see, e.g., [14] for classes of nonconvex objective, or [9] for strictly quasiconvex objective).
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